header

Minggu, 04 Februari 2018

Rangkuman Pengantar Teknologi Sistem Cerdas

Definisi Teknologi Sistem Cerdas atau Artificial Intelegent (AI)
Kecerdasan Buatan atau kecerdasan yang ditambahkan kepada suatu sistem yang bisa diatur dalam konteks ilmiah atau Intelegensi Artifisial (bahasa Inggris: Artificial Intelligence atau hanya disingkat AI) didefinisikan sebagai kecerdasan entitas ilmiah. Sistem seperti ini umumnya dianggap komputer. Kecerdasan diciptakan dan dimasukkan ke dalam suatu mesin (komputer) agar dapat melakukan pekerjaan seperti yang dapat dilakukan manusia. Beberapa macam bidang yang menggunakan kecerdasan buatan antara lain sistem pakar, permainan komputer (games), logika fuzzy, jaringan saraf tiruan dan robotika.
Banyak hal yang kelihatannya sulit untuk kecerdasan manusia, tetapi untuk Informatika relatif tidak bermasalah. Seperti contoh: mentransformasikan persamaan, menyelesaikan persamaan integral, membuat permainan catur atau Backgammon. Di sisi lain, hal yang bagi manusia kelihatannya menuntut sedikit kecerdasan, sampai sekarang masih sulit untuk direalisasikan dalam Informatika. Seperti contoh: Pengenalan Objek/Muka, bermain sepak bola.
Walaupun AI memiliki konotasi fiksi ilmiah yang kuat, AI membentuk cabang yang sangat penting pada ilmu komputer, berhubungan dengan perilaku, pembelajaran dan adaptasi yang cerdas dalam sebuah mesin. Penelitian dalam AI menyangkut pembuatan mesin untuk mengotomatisasikan tugas-tugas yang membutuhkan perilaku cerdas. Termasuk contohnya adalah pengendalian, perencanaan dan penjadwalan, kemampuan untuk menjawab diagnosa dan pertanyaan pelanggan, serta pengenalan tulisan tangan, suara dan wajah. Hal-hal seperti itu telah menjadi disiplin ilmu tersendiri, yang memusatkan perhatian pada penyediaan solusi masalah kehidupan yang nyata. Sistem AI sekarang ini sering digunakan dalam bidang ekonomi, obat-obatan, teknik dan militer, seperti yang telah dibangun dalam beberapa aplikasi perangkat lunak komputer rumah dan video game.

Sejarah AI
Pada awal abad 17, René Descartes mengemukakan bahwa tubuh hewan bukanlah apa-apa melainkan hanya mesin-mesin yang rumit. Blaise Pascal menciptakan mesin penghitung digital mekanis pertama pada 1642. Pada 19, Charles Babbage dan Ada Lovelace bekerja pada mesin penghitung mekanis yang dapat diprogram.
Bertrand Russell dan Alfred North Whitehead menerbitkan Principia Mathematica, yang merombak logika formal. Warren McCulloch dan Walter Pitts menerbitkan "Kalkulus Logis Gagasan yang tetap ada dalam Aktivitas " pada 1943 yang meletakkan fondasi untuk jaringan saraf.
Tahun 1950-an adalah periode usaha aktif dalam AI. Program AI pertama yang bekerja ditulis pada 1951 untuk menjalankan mesin Ferranti Mark I di University of Manchester (UK): sebuah program permainan naskah yang ditulis oleh Christopher Strachey dan program permainan catur yang ditulis oleh Dietrich Prinz. John McCarthy membuat istilah "kecerdasan buatan " pada konferensi pertama yang disediakan untuk pokok persoalan ini, pada 1956. Dia juga menemukan bahasa pemrograman Lisp. Alan Turing memperkenalkan "Turing test" sebagai sebuah cara untuk mengoperasionalkan test perilaku cerdas. Joseph Weizenbaum membangun ELIZA, sebuah chatterbot yang menerapkan psikoterapi Rogerian.
Selama tahun 1960-an dan 1970-an, Joel Moses mendemonstrasikan kekuatan pertimbangan simbolis untuk mengintegrasikan masalah di dalam program Macsyma, program berbasis pengetahuan yang sukses pertama kali dalam bidang matematika. Marvin Minsky dan Seymour Papert menerbitkan Perceptrons, yang mendemostrasikan batas jaringan saraf sederhana dan Alain Colmerauer mengembangkan bahasa komputer Prolog. Ted Shortliffe mendemonstrasikan kekuatan sistem berbasis aturan untuk representasi pengetahuan dan inferensi dalam diagnosa dan terapi medis yang kadangkala disebut sebagai sistem pakar pertama. Hans Moravec mengembangkan kendaraan terkendali komputer pertama untuk mengatasi jalan berintang yang kusut secara mandiri.
Pada tahun 1980-an, jaringan saraf digunakan secara meluas dengan algoritme perambatan balik, pertama kali diterangkan oleh Paul John Werbos pada 1974. Pada tahun 1982, para ahli fisika seperti Hopfield menggunakan teknik-teknik statistika untuk menganalisis sifat-sifat penyimpanan dan optimasi pada jaringan saraf. Para ahli psikologi, David Rumelhart dan Geoff Hinton, melanjutkan penelitian mengenai model jaringan saraf pada memori. Pada tahun 1985-an sedikitnya empat kelompok riset menemukan kembali algoritme pembelajaran propagansi balik (Back-Propagation learning). Algoritme ini berhasil diimplementasikan ke dalam ilmu komputer dan psikologi. Tahun 1990-an ditandai perolehan besar dalam berbagai bidang AI dan demonstrasi berbagai macam aplikasi. Lebih khusus Deep Blue, sebuah komputer permainan catur, mengalahkan Garry Kasparov dalam sebuah pertandingan 6 game yang terkenal pada tahun 1997. DARPA menyatakan bahwa biaya yang disimpan melalui penerapan metode AI untuk unit penjadwalan dalam Perang Teluk pertama telah mengganti seluruh investasi dalam penelitian AI sejak tahun 1950 pada pemerintah AS.
Tantangan Hebat DARPA, yang dimulai pada 2004 dan berlanjut hingga hari ini, adalah sebuah pacuan untuk hadiah $2 juta dimana kendaraan dikemudikan sendiri tanpa komunikasi dengan manusia, menggunakan GPS, komputer dan susunan sensor yang canggih, melintasi beberapa ratus mil daerah gurun yang menantang.

Konsep Dasar AI
1. Acting Humanly
Acting humanly ialah system yang melakukan pendekatan dengan menirukan tingkah laku seperti manusia yang dikenalkan pada tahun 1950 degan cara kerja pengujian melalui teletype yaitu jika penguji (integrator) tidak dapat membedakan yang mengintrogasai antara manusia dan computer maka computer tersebut dikatakan lolos(menjadi kecerdasan buatan).
2. Thinking Humanly
Yaitu system yang dilakukan dengan cara intropeksi yaitu penangkapan pemikiran psikologis
Manusia pada computer,hal ini sering diujikan dengan neuron ke neuron lainnya atau sel otak dengan sel otak lainnya cara pembelajarannya yaitu melalui experiment-experimen.
3. Thinking Rationaly
Ini merupakn system yang sangat sulit ,karena sering terjadi kesalah dala, prinsip dan prakteknya,system ini dikenal dengan penalaran komputasi.
4. Acting Rationaly
Yaitu system yang melakukan aksi dengan cara menciptakan suatu robotika cerdas yang menggantikan tugas manusia.

Contoh studi kasus di bidang AI : Robotika
Bidang ilmu inilah yang mempelajari bagaimana merancang robot yang berguna bagi industry dan mampu membantu manusia, bahkan yang nantinya bisa menggantikan fungsi manusia. Robot mampu melakukan beberapa task dengan berinteraksi dengan lingkungan sekitar. Untuk melakukan hal tersebut, robot diperlengkapi dengan actuator  seperti lengan, roda, kaki, dll. Kemudian, robot juga diperlengkapi dengan sensor, yang memampukan mereka untuk menerima dan bereaksi terhadap environment mereka Al-Jajari (1136-1206) seorang ilmuwan Islam pada dinasti Artuqid yang dianggap pertama kali menciptakan robot humanoid dimana berfungsi sebagai 4 musisi, hebat kan? Bahkan pada tahun 1796 sudah dihasilkan boneka mekanik bernama Karakuri yang mampu menuangkan air teh atau menulis karakter Kanji yang dibuat oleh Hisashige Tanaka.
Ada beberapa istilah penting di dalam robot vision yang saling berhubungan, diantaranya computer vision, machine vision dan robot vision.  Computer vision merupakan teknologi paling penting di masa yang akan datang dalam pengembangan robot yang interaktif.  Computer Vision merupakan bidang pengetahuan yang berfokus pada bidang sistem kecerdasan buatan  dan berhubungan dengan akuisisi  dan pemrosesan image. Machine vision merupakan proses menerpakan teknologi untuk inspeksi automatis berbasis image, kontrol proses dan pemanduan robot pada berbagai aplikasi industri dan rumah tangga.  Robot vision merupakan pengetahuan mengenai penerapan computer  vision pada robot.  Robot   membutuhkan informasi vision untuk memutuskan aksi apa yang akan dilakukan.  Penerapan saat ini vision pada robot antara lain sebagai alat bantu navigasi robot, mencari obyek yang diinginkan, inspeksi lingkungan dan lainnya.  Vision pada robot menjadi sangat penting karena informasi yang diterima lebih detail dibanding hanya sensor jarak atau sensor lainnya.  Misalnya dengan vision, robot dapat mengenal apakah obyek yang terdeteksi merupakan wajah orang atau bukan.  Lebih jauh lagi, sistem vision yang canggih pada robot membuat robot dapat membedakan wajah A dengan wajah B secara akurat (Face recognition system menggunakan metode PCA, LDA dan lainnya).  Proses pengolahan dari input image dari kamera hingga memiliki arti bagi robot  dikenal sebagai visual perception, dimulai dari akuisisi image, image preprocessing untuk memperoleh image yang diinginkan dan bebas noise misalnya, ekstrasi fitur hingga interpretasi seperti ditunjukkan pada gambar 1.8. Misalnya saja untuk identifikasi pelanggan dan penghindaran multiple moving obstacles berbasis vision, atau untuk menggerakan servo sebagai aktuator untuk mengarahkan kamera agar tetap mengarah ke wajah seseorang (face tracking).
Contoh nyata model service robot berbasis vision  (vision-based service robot) yang dikembangkan penulis bernama Srikandi III yang menggunakan 2 buah kamera (stereo vision), dimana robot dapat mengirimkan order pesanan minuman ke pelanggan.
Pada pengembangan selanjutnya, menanamkan kecerdasan buatan yang komplek pada robot sehingga  mampu mengenal dan memahami suara manusia, perhatian terhadap berbagai gerak lawan bicara dan mampu memberikan response alami yang diberikan robot ke manusia merupakan tantangan ke depan untuk membangun robot masa depan.

Sumber Referensi :
·         https://id.wikipedia.org/wiki/Kecerdasan_buatan
·         http://heregeralds.blogspot.co.id/2016/10/konsep-teknologi-sistem-cerdas.html
·         http://blog.rumahproject.com/2016/11/27/contoh-penerapan-kecerdasan-buatan-ai-dalam-kehidupan/

Tidak ada komentar:

Posting Komentar